Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
(FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial due to the band inversion between the and bands along . However, there remain debates in both the authenticity of the Dirac surface states (DSSs) and the experimental deviations of band structure from the theoretical band inversion picture. Here we resolve these debates through a comprehensive angle-resolved photoemission spectroscopy investigation. We first observe a persistent DSS independent of . Then, by comparing FTS with FeSe, which has no band inversion along , we identify the spectral weight fingerprint of both the presence of the band and the inversion between the and bands. Furthermore, we propose a renormalization scheme for the band structure under the framework of a tight-binding model preserving crystal symmetry. Our results highlight the significant influence of correlation on modifying the band structure and make a strong case for the existence of topological band structure in this unconventional superconductor. Published by the American Physical Society2024more » « less
-
Abstract We investigate the impacts of the neutrino cooling mechanism inside the neutron star (NS) core on the light curves of type I X-ray bursts and X-ray superbursts. From several observations of NS thermal evolution, physical processes of fast neutrino cooling, such as the direct Urca (DU) process, are indicated. They significantly decrease the surface temperature of NSs, though the cooling effect could be suppressed by nucleon superfluidity. In the present study, focusing on the DU process and nucleon superfluidity, we investigate the effects of NS cooling on the X-ray bursts using a general-relativistic stellar-evolution code. We find that the DU process leads to a longer recurrence time and higher peak luminosity, which could be obstructed by the neutrons’ superfluidity. We also apply our burst models to the comparison with Clocked burster GS 1826−24, and to the recurrence time of a superburst triggered by carbon ignition. These effects are significant within a certain range of binary parameters and the uncertainty of the NS equation of state.more » « less
An official website of the United States government
